Thursday, 22 August 2013

Team learns how sleeping sickness parasite defeats immune system



by Bob Yirka report


False-coloured scanning electron microscope images of trypanosomes growing in hepatic vessels of mice after 5 days of infection. Credit: Gilles Vanwalleghem, Daniel Monteyne and David Pérez-Morga, CMMI, Laboratory of Molecular Parasitology, Université Libre de Bruxelles, Belgium


(Medical Xpress)—A team of researchers with members from across Europe has discovered the mechanism by which the sleeping sickness parasite overcomes the immune system in humans. In their paper published in the journal Nature, the team describes the three step process that the parasite uses to defeat an immune system response. They also report that they have developed a mutant type of protein that disrupts the parasitic process allowing the immune system to destroy the invader.


Sleeping sickness is caused by a parasite which is usually transmitted by the fly—7,197 new cases were reported in 2012 alone. It's constrained mainly to Africa and no known vaccine exists to prevent it. In many cases, people who are infected live with it for many years, eventually succumbing to its debilitating effects (headaches, fever, itching, joint pain and eventually swollen lymph nodes and other as well as ). The parasite gains entry to the body when a victim is bitten then travels to other parts of the body via the bloodstream. Modern treatments for the disease have reduced deaths dramatically, but the hope is that a vaccine can be created that will prevent the misery it inflicts.


The researchers have been studying the gambiense strain of the parasite which is responsible for the majority (97 percent) of human deaths. In so doing they have learned that the parasites use a three step process to outwit the .



False-coloured scanning electron microscope images of trypanosomes laying on the peritoneum ephitelium during the first day of infection. Credit: Gilles Vanwalleghem, Daniel Monteyne and David Pérez-Morga, CMMI, Laboratory of Molecular Parasitology, Université Libre de Bruxelles, Belgium


In the first stage, the parasite creates a protein to stiffen its membranes, making it difficult for the apoL1 to enter the parasite body and kill it. The second stage involves building up its inner defenses to make it even more difficult for apol1 to make its way inside. The third stage involves actually digesting the apoL1 protein if it does make its way inside the parasite, preventing its absorption which would kill it.


Because the team was able to identify the process by which the parasite foils the immune system, they were able to develop a mutant strain of the apoL1 protein which was not fooled by the tactics of the parasite and was therefore able to kill it. A lot more research will have to be conducted on the mutant strain of course, to make sure it doesn't behave in unexpected ways, before human trials can begin.



More information: Mechanism of Trypanosoma brucei gambiense resistance to human serum, Nature (2013) DOI: 10.1038/nature12516


Abstract

The African parasite Trypanosoma brucei gambiense accounts for 97% of human sleeping sickness cases. T. b. gambiense resists the specific human innate immunity acting against several other tsetse-fly-transmitted trypanosome species such as T. b. brucei, the causative agent of nagana disease in cattle. Human immunity to some African trypanosomes is due to two serum complexes designated trypanolytic factors (TLF-1 and -2), which both contain haptoglobin-related protein (HPR) and apolipoprotein LI (APOL1)2, 3, 4. Whereas HPR association with haemoglobin (Hb) allows TLF-1 binding and uptake via the trypanosome receptor TbHpHbR, TLF-2 enters trypanosomes independently of TbHpHbR. APOL1 kills trypanosomes after insertion into endosomal/lysosomal membranes. Here we report that T. b. gambiense resists TLFs via a hydrophobic ?-sheet of the T. b. gambiense-specific glycoprotein (TgsGP)8, which prevents APOL1 toxicity and induces stiffening of membranes upon interaction with lipids. Two additional features contribute to resistance to TLFs: reduction of sensitivity to APOL1 requiring cysteine protease activity, and TbHpHbR inactivation due to a L210S substitution. According to such a multifactorial defence mechanism, transgenic expression of T. b. brucei TbHpHbR in T. b. gambiense did not cause parasite lysis in normal human serum. However, these transgenic parasites were killed in hypohaptoglobinaemic serum, after high TLF-1 uptake in the absence of haptoglobin (Hp) that competes for Hb and receptor binding. TbHpHbR inactivation preventing high APOL1 loading in hypohaptoglobinaemic serum may have evolved because of the overlapping endemic area of T. b. gambiense infection and malaria, the main cause of haemolysis-induced hypohaptoglobinaemia in western and central Africa.



Journal reference: Nature



© 2013 Medical Xpress


Medical Xpress on facebook

Related Stories


Parasite sheds light on sleeping sickness


Apr 21, 2011



Fresh insight into the survival strategy of the sleeping sickness parasite could help inform treatments for the disease.



Researchers discover how the deadly malaria parasite evades the immune system, make progress toward developing a cure


Dec 03, 2012



(Medical Xpress)—More than a million people die each year of malaria caused by different strains of the Plasmodium parasite transmitted by the Anopheles mosquito. The medical world has yet to find an effective ...



Australian researchers close in on malaria vaccine


Jul 02, 2013



Australian researchers said Tuesday they were closing in on a potential vaccine against malaria, with a study showing their treatment had protected mice against several strains of the disease.



Unveiling malaria's 'invisibility cloak'


Jan 18, 2012



The discovery by researchers from the Walter and Eliza Hall Institute of a molecule that is key to malaria's 'invisibility cloak' will help to better understand how the parasite causes disease and escapes from the defenses ...



Variants at gene linked to kidney disease, sleeping sickness resistance


Jul 31, 2013



(Medical Xpress)—A new study led by University of Pennsylvania researchers involves a classic case of evolution's fickle nature: a genetic mutation that protects against a potentially fatal infectious disease also appears ...



Recommended for you




Study finds that microbes influence B-cell development in the gut


16 hours ago



Gut bacteria exert a dramatic, systemic effect on the development of the immune system's B-lymphocytes, according to a new mouse study by researchers at Boston Children's Hospital. While influences of gut ...





Bacteria make us feel pain... and suppress our immune response


20 hours ago



The pain of invasive skin infections caused by methicillin-resistant Staphylococcus aureus, and possibly other serious, painful infections, appear to be induced by the invading bacteria themselves, and no ...





Fertility and weight relationship investigated


Aug 21, 2013



A peptide that controls appetite and metabolism is at the centre of research which aims to give insight into how peptides affect fertility.



Gastric bypass surgery changes the brain’s response to food


Aug 21, 2013



(Medical Xpress)—The weight loss seen in patients after gastric bypass surgery for obesity may be helped by changes in the way the brain itself responds to food, reducing not only hunger but also the drive to eat for pleasure, ...





Enzyme 'Lyn' linked to anaemia


Aug 21, 2013



New research by a team including experts from the UWA-affiliated Western Australian Institute for Medical Research (WAIMR) has proved a link between an enzyme known as "Lyn" and the blood disorder anaemia.





Combo pulsed, non-ablative laser treatment is safe


Aug 20, 2013



(HealthDay)—For facial rejuvenation, a combination treatment of an optimized intense pulsed light source and a non-ablative fractional laser is safe and effective, according to a study published in the ...



User comments







by Bob Yirka report


False-coloured scanning electron microscope images of trypanosomes growing in hepatic vessels of mice after 5 days of infection. Credit: Gilles Vanwalleghem, Daniel Monteyne and David Pérez-Morga, CMMI, Laboratory of Molecular Parasitology, Université Libre de Bruxelles, Belgium


(Medical Xpress)—A team of researchers with members from across Europe has discovered the mechanism by which the sleeping sickness parasite overcomes the immune system in humans. In their paper published in the journal Nature, the team describes the three step process that the parasite uses to defeat an immune system response. They also report that they have developed a mutant type of protein that disrupts the parasitic process allowing the immune system to destroy the invader.


Sleeping sickness is caused by a parasite which is usually transmitted by the fly—7,197 new cases were reported in 2012 alone. It's constrained mainly to Africa and no known vaccine exists to prevent it. In many cases, people who are infected live with it for many years, eventually succumbing to its debilitating effects (headaches, fever, itching, joint pain and eventually swollen lymph nodes and other as well as ). The parasite gains entry to the body when a victim is bitten then travels to other parts of the body via the bloodstream. Modern treatments for the disease have reduced deaths dramatically, but the hope is that a vaccine can be created that will prevent the misery it inflicts.


The researchers have been studying the gambiense strain of the parasite which is responsible for the majority (97 percent) of human deaths. In so doing they have learned that the parasites use a three step process to outwit the .



False-coloured scanning electron microscope images of trypanosomes laying on the peritoneum ephitelium during the first day of infection. Credit: Gilles Vanwalleghem, Daniel Monteyne and David Pérez-Morga, CMMI, Laboratory of Molecular Parasitology, Université Libre de Bruxelles, Belgium


In the first stage, the parasite creates a protein to stiffen its membranes, making it difficult for the apoL1 to enter the parasite body and kill it. The second stage involves building up its inner defenses to make it even more difficult for apol1 to make its way inside. The third stage involves actually digesting the apoL1 protein if it does make its way inside the parasite, preventing its absorption which would kill it.


Because the team was able to identify the process by which the parasite foils the immune system, they were able to develop a mutant strain of the apoL1 protein which was not fooled by the tactics of the parasite and was therefore able to kill it. A lot more research will have to be conducted on the mutant strain of course, to make sure it doesn't behave in unexpected ways, before human trials can begin.



More information: Mechanism of Trypanosoma brucei gambiense resistance to human serum, Nature (2013) DOI: 10.1038/nature12516


Abstract

The African parasite Trypanosoma brucei gambiense accounts for 97% of human sleeping sickness cases. T. b. gambiense resists the specific human innate immunity acting against several other tsetse-fly-transmitted trypanosome species such as T. b. brucei, the causative agent of nagana disease in cattle. Human immunity to some African trypanosomes is due to two serum complexes designated trypanolytic factors (TLF-1 and -2), which both contain haptoglobin-related protein (HPR) and apolipoprotein LI (APOL1)2, 3, 4. Whereas HPR association with haemoglobin (Hb) allows TLF-1 binding and uptake via the trypanosome receptor TbHpHbR, TLF-2 enters trypanosomes independently of TbHpHbR. APOL1 kills trypanosomes after insertion into endosomal/lysosomal membranes. Here we report that T. b. gambiense resists TLFs via a hydrophobic ?-sheet of the T. b. gambiense-specific glycoprotein (TgsGP)8, which prevents APOL1 toxicity and induces stiffening of membranes upon interaction with lipids. Two additional features contribute to resistance to TLFs: reduction of sensitivity to APOL1 requiring cysteine protease activity, and TbHpHbR inactivation due to a L210S substitution. According to such a multifactorial defence mechanism, transgenic expression of T. b. brucei TbHpHbR in T. b. gambiense did not cause parasite lysis in normal human serum. However, these transgenic parasites were killed in hypohaptoglobinaemic serum, after high TLF-1 uptake in the absence of haptoglobin (Hp) that competes for Hb and receptor binding. TbHpHbR inactivation preventing high APOL1 loading in hypohaptoglobinaemic serum may have evolved because of the overlapping endemic area of T. b. gambiense infection and malaria, the main cause of haemolysis-induced hypohaptoglobinaemia in western and central Africa.



Journal reference: Nature



© 2013 Medical Xpress


Medical Xpress on facebook

Related Stories


Parasite sheds light on sleeping sickness


Apr 21, 2011



Fresh insight into the survival strategy of the sleeping sickness parasite could help inform treatments for the disease.



Researchers discover how the deadly malaria parasite evades the immune system, make progress toward developing a cure


Dec 03, 2012



(Medical Xpress)—More than a million people die each year of malaria caused by different strains of the Plasmodium parasite transmitted by the Anopheles mosquito. The medical world has yet to find an effective ...



Australian researchers close in on malaria vaccine


Jul 02, 2013



Australian researchers said Tuesday they were closing in on a potential vaccine against malaria, with a study showing their treatment had protected mice against several strains of the disease.



Unveiling malaria's 'invisibility cloak'


Jan 18, 2012



The discovery by researchers from the Walter and Eliza Hall Institute of a molecule that is key to malaria's 'invisibility cloak' will help to better understand how the parasite causes disease and escapes from the defenses ...



Variants at gene linked to kidney disease, sleeping sickness resistance


Jul 31, 2013



(Medical Xpress)—A new study led by University of Pennsylvania researchers involves a classic case of evolution's fickle nature: a genetic mutation that protects against a potentially fatal infectious disease also appears ...



Recommended for you




Study finds that microbes influence B-cell development in the gut


16 hours ago



Gut bacteria exert a dramatic, systemic effect on the development of the immune system's B-lymphocytes, according to a new mouse study by researchers at Boston Children's Hospital. While influences of gut ...





Bacteria make us feel pain... and suppress our immune response


20 hours ago



The pain of invasive skin infections caused by methicillin-resistant Staphylococcus aureus, and possibly other serious, painful infections, appear to be induced by the invading bacteria themselves, and no ...





Fertility and weight relationship investigated


Aug 21, 2013



A peptide that controls appetite and metabolism is at the centre of research which aims to give insight into how peptides affect fertility.



Gastric bypass surgery changes the brain’s response to food


Aug 21, 2013



(Medical Xpress)—The weight loss seen in patients after gastric bypass surgery for obesity may be helped by changes in the way the brain itself responds to food, reducing not only hunger but also the drive to eat for pleasure, ...





Enzyme 'Lyn' linked to anaemia


Aug 21, 2013



New research by a team including experts from the UWA-affiliated Western Australian Institute for Medical Research (WAIMR) has proved a link between an enzyme known as "Lyn" and the blood disorder anaemia.





Combo pulsed, non-ablative laser treatment is safe


Aug 20, 2013



(HealthDay)—For facial rejuvenation, a combination treatment of an optimized intense pulsed light source and a non-ablative fractional laser is safe and effective, according to a study published in the ...



User comments








Categories:

0 comments:

Post a Comment