Wednesday, 16 October 2013

Schizophrenia linked to abnormal brain waves



by Anne Trafton


Mouse modeling schizophrenia show abnormal activity in hippocampal place cells. Left: In normal mice, hippocampal neurons, known as place cells, become activated in a specific location within the maze. For example, cell #1 is activated when the mouse is near the start point of the maze. In this figure, the yellow dot indicates that cell #1 showed activity when the mouse is at that place. Upper right: In normal mice, during rest periods, hippocampal place cells became reactivated in the same order as in the maze-performing period (ex. Cell①-②-③-④-⑤). However, in mice modeling schizophrenia, all place cells were reactivated almost simultaneously at abnormally high level. Lower right: The graph shows the relationship between the distance and the difference in activity timing between given pairs of place cells. In normal mice (left, CT), the further apart in distance the pairs of place cells are the greater the difference of activation timing between these cells is. However, in mice modeling schizophrenia (right, KO), the difference of activation timing is around zero independent of the distance of given pairs of place cells, that is they are activated almost simultaneously. Credit: RIKEN


Schizophrenia patients usually suffer from a breakdown of organized thought, often accompanied by delusions or hallucinations. For the first time, MIT neuroscientists have observed the neural activity that appears to produce this disordered thinking.


The researchers found that lacking the brain protein have hyperactive brain-wave oscillations in the while resting, and are unable to mentally replay a route they have just run, as normal mice do.


Mutations in the gene for calcineurin have previously been found in some . Ten years ago, MIT researchers led by Susumu Tonegawa, the Picower Professor of Biology and Neuroscience, created mice lacking the gene for calcineurin in the forebrain; these mice displayed several behavioral symptoms of schizophrenia, including impaired short-term memory, attention deficits, and abnormal social behavior.


In the new study, which appears in the Oct. 16 issue of the journal Neuron, Tonegawa and colleagues at the RIKEN-MIT Center for Neural Circuit Genetics at MIT's Picower Institute for Learning and Memory recorded the electrical activity of individual neurons in the hippocampus of these knockout mice as they ran along a track.


Previous studies have shown that in normal mice, "place cells" in the hippocampus, which are linked to specific locations along the track, fire in sequence when the mice take breaks from running the course. This mental replay also occurs when the mice are sleeping. These replays occur in association with very high frequency brain-wave oscillations known as ripple events.


In mice lacking calcineurin, the researchers found that brain activity was normal as the mice ran the course, but when they paused, their ripple events were much stronger and more frequent. Furthermore, the firing of the was abnormally augmented and in no particular order, indicating that the mice were not replaying the route they had just run.


This pattern helps to explain some of the symptoms seen in schizophrenia, the researchers say.


"We think that in this mouse model, we may have some kind of indication that there's a disorganized thinking process going on," says Junghyup Suh, a research scientist at the Picower Institute and one of the paper's lead authors. "During ripple events in normal mice we know there is a sequential replay event. This mutant mouse doesn't seem to have that kind of replay of a previous experience."


The paper's other lead author is David Foster, a former MIT postdoc. Other authors are Heydar Davoudi and Matthew Wilson, the Sherman Fairchild Professor of Neuroscience at MIT and a member of the Picower Institute.


The researchers speculate that in normal mice, the role of calcineurin is to suppress the connections between neurons, known as synapses, in the hippocampus. In mice without calcineurin, a phenomenon known as long-term potentiation (LTP) becomes more prevalent, making synapses stronger. Also, the opposite effect, known as long-term depression (LTD), is suppressed.


"It looks like this abnormally high LTP has an impact on activity of these cells specifically during resting periods, or post exploration periods. That's a very interesting specificity," Tonegawa says. "We don't know why it's so specific."


The researchers believe the abnormal hyperactivity they found in the hippocampus may represent a disruption of the brain's "default mode network"—a communication network that connects the hippocampus, prefrontal cortex (where most thought and planning occurs), and other parts of the cortex.


This network is more active when a person (or mouse) is resting between goal-oriented tasks. When the brain is focusing on a specific goal or activity, the default mode network gets turned down. However, this network is hyperactive in schizophrenic patients before and during tasks that require the brain to focus, and patients do not perform well in these tasks.


Further studies of these mice could help reveal more about the role of the default mode network in , Tonegawa says.



More information: Junghyup Suh, David J. Foster, Heydar Davoudi, Matthew A. Wilson and Susumu Tonegawa, "Impaired hippocampal ripple-associated replay in a mouse model of schizophrenia" Neuron, 2013


Medical Xpress on facebook

Related Stories


Modifying activity of neuronal networks that encode spatial memories leads to formation of incorrect fear memory in mice


Sep 13, 2013



The formation and retrieval of memories allows all kinds of organisms, including humans, to learn and thrive in their environment. Yet our memories are not always accurate, and mistaken remembrances can have ...



Neuroscientists show ability to plant false memories


Jul 25, 2013



The phenomenon of false memory has been well-documented: In many court cases, defendants have been found guilty based on testimony from witnesses and victims who were sure of their recollections, but DNA evidence later overturned ...



Sleep helps build long-term memories


Jun 24, 2009



(PhysOrg.com) -- Experts have long suspected that part of the process of turning fleeting short-term memories into lasting long-term memories occurs during sleep. Now, researchers at the RIKEN-MIT Center for ...



Brain circuit can tune anxiety


Aug 21, 2013



Anxiety disorders, which include posttraumatic stress disorder, social phobias and obsessive-compulsive disorder, affect 40 million American adults in a given year. Currently available treatments, such as ...



How old memories fade away: Discovery of a gene essential for memory extinction could lead to new PTSD treatments


Sep 18, 2013



If you got beat up by a bully on your walk home from school every day, you would probably become very afraid of the spot where you usually met him. However, if the bully moved out of town, you would gradually ...



Recommended for you




'Individualized' therapy for the brain targets specific gene mutations causing dementia and ALS


3 seconds ago



Johns Hopkins scientists have developed new drugs that—at least in a laboratory dish—appear to halt the brain-destroying impact of a genetic mutation at work in some forms of two incurable diseases, amyotrophic ...





Glowing neurons reveal networked link between brain, whiskers


36 minutes ago



Human fingertips have several types of sensory neurons that are responsible for relaying touch signals to the central nervous system. Scientists have long believed these neurons followed a linear path to ...





Study reveals brain connections for introspection


3 hours ago



(Medical Xpress)—The human mind is not only capable of cognition and registering experiences but also of being introspectively aware of these processes. Until now, scientists have not known if such introspection ...





Research shows Oreos are just as addictive as drugs in lab rats


3 hours ago



Connecticut College students and a professor of neuroscience have found "America's favorite cookie" is just as addictive as cocaine – at least for lab rats. And just like most humans, rats go for the middle ...



US research team wins $1 million prize in Israel


20 hours ago



An Israeli nonprofit group has awarded a $1 million prize to a U.S.-based research team that is developing technology that allows paralyzed people to move things with their thoughts.



Method of recording brain activity could lead to mind-reading devices


21 hours ago



A brain region activated when people are asked to perform mathematical calculations in an experimental setting is similarly activated when they use numbers—or even imprecise quantitative terms, such as "more than"— in ...



User comments







by Anne Trafton


Mouse modeling schizophrenia show abnormal activity in hippocampal place cells. Left: In normal mice, hippocampal neurons, known as place cells, become activated in a specific location within the maze. For example, cell #1 is activated when the mouse is near the start point of the maze. In this figure, the yellow dot indicates that cell #1 showed activity when the mouse is at that place. Upper right: In normal mice, during rest periods, hippocampal place cells became reactivated in the same order as in the maze-performing period (ex. Cell①-②-③-④-⑤). However, in mice modeling schizophrenia, all place cells were reactivated almost simultaneously at abnormally high level. Lower right: The graph shows the relationship between the distance and the difference in activity timing between given pairs of place cells. In normal mice (left, CT), the further apart in distance the pairs of place cells are the greater the difference of activation timing between these cells is. However, in mice modeling schizophrenia (right, KO), the difference of activation timing is around zero independent of the distance of given pairs of place cells, that is they are activated almost simultaneously. Credit: RIKEN


Schizophrenia patients usually suffer from a breakdown of organized thought, often accompanied by delusions or hallucinations. For the first time, MIT neuroscientists have observed the neural activity that appears to produce this disordered thinking.


The researchers found that lacking the brain protein have hyperactive brain-wave oscillations in the while resting, and are unable to mentally replay a route they have just run, as normal mice do.


Mutations in the gene for calcineurin have previously been found in some . Ten years ago, MIT researchers led by Susumu Tonegawa, the Picower Professor of Biology and Neuroscience, created mice lacking the gene for calcineurin in the forebrain; these mice displayed several behavioral symptoms of schizophrenia, including impaired short-term memory, attention deficits, and abnormal social behavior.


In the new study, which appears in the Oct. 16 issue of the journal Neuron, Tonegawa and colleagues at the RIKEN-MIT Center for Neural Circuit Genetics at MIT's Picower Institute for Learning and Memory recorded the electrical activity of individual neurons in the hippocampus of these knockout mice as they ran along a track.


Previous studies have shown that in normal mice, "place cells" in the hippocampus, which are linked to specific locations along the track, fire in sequence when the mice take breaks from running the course. This mental replay also occurs when the mice are sleeping. These replays occur in association with very high frequency brain-wave oscillations known as ripple events.


In mice lacking calcineurin, the researchers found that brain activity was normal as the mice ran the course, but when they paused, their ripple events were much stronger and more frequent. Furthermore, the firing of the was abnormally augmented and in no particular order, indicating that the mice were not replaying the route they had just run.


This pattern helps to explain some of the symptoms seen in schizophrenia, the researchers say.


"We think that in this mouse model, we may have some kind of indication that there's a disorganized thinking process going on," says Junghyup Suh, a research scientist at the Picower Institute and one of the paper's lead authors. "During ripple events in normal mice we know there is a sequential replay event. This mutant mouse doesn't seem to have that kind of replay of a previous experience."


The paper's other lead author is David Foster, a former MIT postdoc. Other authors are Heydar Davoudi and Matthew Wilson, the Sherman Fairchild Professor of Neuroscience at MIT and a member of the Picower Institute.


The researchers speculate that in normal mice, the role of calcineurin is to suppress the connections between neurons, known as synapses, in the hippocampus. In mice without calcineurin, a phenomenon known as long-term potentiation (LTP) becomes more prevalent, making synapses stronger. Also, the opposite effect, known as long-term depression (LTD), is suppressed.


"It looks like this abnormally high LTP has an impact on activity of these cells specifically during resting periods, or post exploration periods. That's a very interesting specificity," Tonegawa says. "We don't know why it's so specific."


The researchers believe the abnormal hyperactivity they found in the hippocampus may represent a disruption of the brain's "default mode network"—a communication network that connects the hippocampus, prefrontal cortex (where most thought and planning occurs), and other parts of the cortex.


This network is more active when a person (or mouse) is resting between goal-oriented tasks. When the brain is focusing on a specific goal or activity, the default mode network gets turned down. However, this network is hyperactive in schizophrenic patients before and during tasks that require the brain to focus, and patients do not perform well in these tasks.


Further studies of these mice could help reveal more about the role of the default mode network in , Tonegawa says.



More information: Junghyup Suh, David J. Foster, Heydar Davoudi, Matthew A. Wilson and Susumu Tonegawa, "Impaired hippocampal ripple-associated replay in a mouse model of schizophrenia" Neuron, 2013


Medical Xpress on facebook

Related Stories


Modifying activity of neuronal networks that encode spatial memories leads to formation of incorrect fear memory in mice


Sep 13, 2013



The formation and retrieval of memories allows all kinds of organisms, including humans, to learn and thrive in their environment. Yet our memories are not always accurate, and mistaken remembrances can have ...



Neuroscientists show ability to plant false memories


Jul 25, 2013



The phenomenon of false memory has been well-documented: In many court cases, defendants have been found guilty based on testimony from witnesses and victims who were sure of their recollections, but DNA evidence later overturned ...



Sleep helps build long-term memories


Jun 24, 2009



(PhysOrg.com) -- Experts have long suspected that part of the process of turning fleeting short-term memories into lasting long-term memories occurs during sleep. Now, researchers at the RIKEN-MIT Center for ...



Brain circuit can tune anxiety


Aug 21, 2013



Anxiety disorders, which include posttraumatic stress disorder, social phobias and obsessive-compulsive disorder, affect 40 million American adults in a given year. Currently available treatments, such as ...



How old memories fade away: Discovery of a gene essential for memory extinction could lead to new PTSD treatments


Sep 18, 2013



If you got beat up by a bully on your walk home from school every day, you would probably become very afraid of the spot where you usually met him. However, if the bully moved out of town, you would gradually ...



Recommended for you




'Individualized' therapy for the brain targets specific gene mutations causing dementia and ALS


3 seconds ago



Johns Hopkins scientists have developed new drugs that—at least in a laboratory dish—appear to halt the brain-destroying impact of a genetic mutation at work in some forms of two incurable diseases, amyotrophic ...





Glowing neurons reveal networked link between brain, whiskers


36 minutes ago



Human fingertips have several types of sensory neurons that are responsible for relaying touch signals to the central nervous system. Scientists have long believed these neurons followed a linear path to ...





Study reveals brain connections for introspection


3 hours ago



(Medical Xpress)—The human mind is not only capable of cognition and registering experiences but also of being introspectively aware of these processes. Until now, scientists have not known if such introspection ...





Research shows Oreos are just as addictive as drugs in lab rats


3 hours ago



Connecticut College students and a professor of neuroscience have found "America's favorite cookie" is just as addictive as cocaine – at least for lab rats. And just like most humans, rats go for the middle ...



US research team wins $1 million prize in Israel


20 hours ago



An Israeli nonprofit group has awarded a $1 million prize to a U.S.-based research team that is developing technology that allows paralyzed people to move things with their thoughts.



Method of recording brain activity could lead to mind-reading devices


21 hours ago



A brain region activated when people are asked to perform mathematical calculations in an experimental setting is similarly activated when they use numbers—or even imprecise quantitative terms, such as "more than"— in ...



User comments








Categories:

0 comments:

Post a Comment