Radiotherapy using protons can deliver more accurate treatment to a tumour while reducing the dose to surrounding tissue. However, in mobile organs such as the lung, precise targeting of the dose is difficult. Now researchers have succeeded in making a model of breathing movement that allows for the precise measurement of narrow beams to a dummy tumour by simulating the motion and physical properties of the chest anatomy in a model, the 3rd ESTRO Forum in Barcelona, Spain, will hear today (Monday).
Dr Rosalind Perrin, from the Centre for Proton Therapy at the Paul Scherrer Institute, Villigen, Switzerland, will describe to the conference the method she and colleagues have developed to test the application of proton therapy to lung cancer, using a delivery technique called rescanning, which helps to mitigate the effect of motion, and to develop practical ways to implement it in the clinic for patient treatments.
"This involved experiments using an advanced breathing model of the patient, a so-called 'anthropomorphic phantom', with integrated measurement devices to accurately measure the dose distribution. We found that our rescanning technique worked well to overcome the effect of motion on the dose delivered to the tumour, and for tumour motions of up to 1 cm," she will say.
The model developed by the researchers was made up of a sphere representing a tumour moving within an inflating lung, enclosed in a rib cage complete with surrounding muscle and skin layers. The model can be programmed to move with breathing patterns specific to each patient. Radiation dosage was measured during movement, and the researchers found that the rescanning technique allowed the application of clinically acceptable dose distribution to the tumour, and only a minimal dose to surrounding tissues.
Scanning proton therapy is an emerging technology in cancer therapy, in which a narrow particle beam, consisting of accelerated hydrogen nuclei, is scanned through the tumour and administers highly targeted radiation to the cancer cells. Because protons have a relatively large mass, the beam delivers most of its radiation dose towards the end of its path in tissue, and thus proton therapy can be designed to limit dose to surrounding tissues. Furthermore, a proton beam only penetrates the tissue up to a given depth, determined by its energy. So, compared with conventional radiotherapy techniques, the therapy allows a maximal dose to the tumour, while reducing the dose elsewhere.
However, for mobile tumours in the liver or lung, organ and tumour motion deteriorates the dose distribution because there may be a rift between the radiation delivery time-line and the time-line of the tumour motion: the "interplay" effect. The researchers at the Paul Scherrer Institute have worked to overcome this problem by developing a new, state-of-the art delivery system, and the technology required by these advanced "motion mitigation" methods is now operational. The rescanning technique involves scanning the tumour several times by the proton beam.
"This makes it possible to average out the dose to the moving tumour, and also reduce the effect of motion on the dose delivered to it. Because of the sensitivity of the lung to radiation, as well as the proximity of the heart, oesophagus and spinal cord, it is particularly important to keep the radiation dose to surrounding tissues as low as possible in lung cancer," says Dr Perrin.
The next challenge for the researchers is to translate the technique into the clinic for the benefit of patients, with the aim of improving cancer radiotherapy while reducing side effects. However, cost remains a problem. "The cost-benefit of proton therapy is a hotly-debated topic amongst national healthcare bodies and insurers. But if we can show, through randomised clinical studies, that proton therapy is better for certain cancer types, this may influence politicians and insurance providers to make appropriate decisions. This is particularly important for cancer types with a poor outcome that are subject to motion, especially advanced-stage liver and lung cancers," Dr Perrin will conclude.
Professor Philip Poortmans, President of ESTRO, commented: "Proton therapy is currently attracting a lot of attention in the field of oncology as well as in the lay press. This study points out very accurately that a lot of work still has to be done before its applicability to most tumour sites will be broadly acceptable outside the field of clinical trials. The investigators focused on the challenge of the movement of the tumour within the patient's body, for example with a normal breathing cycle. The rescanning technique they describe, which compensates for tumour motion, averages out the delivered dose while keeping the dose to surrounding normal tissues at a low level. The next challenge will be to bring this novel technique to the point of clinical applicability."
Explore further: Research demonstrates potential method to better control lung cancer using radiotherapy
Medical Xpress on facebook
Related Stories
Research demonstrates potential method to better control lung cancer using radiotherapy
Manchester scientists are working out how to safely increase the radiotherapy dose given to lung cancer patients – potentially offering improved local control and survival.
High radiotherapy dose improves prospects for children with brain cancer
Two studies to be presented today (Sunday) at the 3rd ESTRO Forum in Barcelona, Spain, show that increasing the dose of radiotherapy given to children with an intracranial ependymoma, a form of cancer of the central nervous ...
Combined brachytherapy techniques should be 'benchmark' for cervical cancer treatment
The first large international study to investigate the late side-effects of a combination of two forms of brachytherapy to treat cervical cancer has shown that the technique successfully delivers higher radiation doses to ...
Computer-controlled table could direct radiotherapy to tumours while sparing vital organs
Swivelling patients around on a computer-controlled, rotating table could deliver high doses of radiotherapy to tumours more quickly than current methods, while sparing vulnerable organs such as the heart, brain, eyes and ...
Permanent radiotherapy implants reduce risk of prostate cancer recurrence after five years
Results from a randomised controlled trial to compare the use of permanent radioactive implants (brachytherapy) with dose-escalated external beam radiotherapy in patients with prostate cancer show that the men who received ...
Recommended for you
Permanent radiotherapy implants reduce risk of prostate cancer recurrence after five years
Results from a randomised controlled trial to compare the use of permanent radioactive implants (brachytherapy) with dose-escalated external beam radiotherapy in patients with prostate cancer show that the men who received ...
High radiotherapy dose improves prospects for children with brain cancer
Two studies to be presented today (Sunday) at the 3rd ESTRO Forum in Barcelona, Spain, show that increasing the dose of radiotherapy given to children with an intracranial ependymoma, a form of cancer of the central nervous ...
Brachytherapy improves survival for inoperable early stage endometrial cancer
Women who have early stage endometrial cancer and are inoperable tend to live longer if they have been treated with brachytherapy with or without external beam radiation, according to new research to be presented at the 3rd ...
Combined brachytherapy techniques should be 'benchmark' for cervical cancer treatment
The first large international study to investigate the late side-effects of a combination of two forms of brachytherapy to treat cervical cancer has shown that the technique successfully delivers higher radiation doses to ...
Breakthrough provides new hope for more effective treatments of HER2+ breast cancer
Ahmad M. Khalil, PhD, knew the odds were against him—as in thousands upon thousands to one.
FDG PET/CT not useful in staging newly diagnosed stage III invasive lobular breast cancer
Although National Comprehensive Cancer Network (NCCN) guidelines consider 18F-PET/CT (FDG PET/CT) appropriate for systemic staging of newly diagnosed stage III breast cancer, the technique may not be equally valuable for ...
User comments
Please sign in to add a comment. Registration is free, and takes less than a minute. Read more
Click here to reset your password.Sign in to get notified via email when new comments are made.
© Medical Xpress 2011-2015, Science X network
Radiotherapy using protons can deliver more accurate treatment to a tumour while reducing the dose to surrounding tissue. However, in mobile organs such as the lung, precise targeting of the dose is difficult. Now researchers have succeeded in making a model of breathing movement that allows for the precise measurement of narrow beams to a dummy tumour by simulating the motion and physical properties of the chest anatomy in a model, the 3rd ESTRO Forum in Barcelona, Spain, will hear today (Monday).
Dr Rosalind Perrin, from the Centre for Proton Therapy at the Paul Scherrer Institute, Villigen, Switzerland, will describe to the conference the method she and colleagues have developed to test the application of proton therapy to lung cancer, using a delivery technique called rescanning, which helps to mitigate the effect of motion, and to develop practical ways to implement it in the clinic for patient treatments.
"This involved experiments using an advanced breathing model of the patient, a so-called 'anthropomorphic phantom', with integrated measurement devices to accurately measure the dose distribution. We found that our rescanning technique worked well to overcome the effect of motion on the dose delivered to the tumour, and for tumour motions of up to 1 cm," she will say.
The model developed by the researchers was made up of a sphere representing a tumour moving within an inflating lung, enclosed in a rib cage complete with surrounding muscle and skin layers. The model can be programmed to move with breathing patterns specific to each patient. Radiation dosage was measured during movement, and the researchers found that the rescanning technique allowed the application of clinically acceptable dose distribution to the tumour, and only a minimal dose to surrounding tissues.
Scanning proton therapy is an emerging technology in cancer therapy, in which a narrow particle beam, consisting of accelerated hydrogen nuclei, is scanned through the tumour and administers highly targeted radiation to the cancer cells. Because protons have a relatively large mass, the beam delivers most of its radiation dose towards the end of its path in tissue, and thus proton therapy can be designed to limit dose to surrounding tissues. Furthermore, a proton beam only penetrates the tissue up to a given depth, determined by its energy. So, compared with conventional radiotherapy techniques, the therapy allows a maximal dose to the tumour, while reducing the dose elsewhere.
However, for mobile tumours in the liver or lung, organ and tumour motion deteriorates the dose distribution because there may be a rift between the radiation delivery time-line and the time-line of the tumour motion: the "interplay" effect. The researchers at the Paul Scherrer Institute have worked to overcome this problem by developing a new, state-of-the art delivery system, and the technology required by these advanced "motion mitigation" methods is now operational. The rescanning technique involves scanning the tumour several times by the proton beam.
"This makes it possible to average out the dose to the moving tumour, and also reduce the effect of motion on the dose delivered to it. Because of the sensitivity of the lung to radiation, as well as the proximity of the heart, oesophagus and spinal cord, it is particularly important to keep the radiation dose to surrounding tissues as low as possible in lung cancer," says Dr Perrin.
The next challenge for the researchers is to translate the technique into the clinic for the benefit of patients, with the aim of improving cancer radiotherapy while reducing side effects. However, cost remains a problem. "The cost-benefit of proton therapy is a hotly-debated topic amongst national healthcare bodies and insurers. But if we can show, through randomised clinical studies, that proton therapy is better for certain cancer types, this may influence politicians and insurance providers to make appropriate decisions. This is particularly important for cancer types with a poor outcome that are subject to motion, especially advanced-stage liver and lung cancers," Dr Perrin will conclude.
Professor Philip Poortmans, President of ESTRO, commented: "Proton therapy is currently attracting a lot of attention in the field of oncology as well as in the lay press. This study points out very accurately that a lot of work still has to be done before its applicability to most tumour sites will be broadly acceptable outside the field of clinical trials. The investigators focused on the challenge of the movement of the tumour within the patient's body, for example with a normal breathing cycle. The rescanning technique they describe, which compensates for tumour motion, averages out the delivered dose while keeping the dose to surrounding normal tissues at a low level. The next challenge will be to bring this novel technique to the point of clinical applicability."
Explore further: Research demonstrates potential method to better control lung cancer using radiotherapy
Medical Xpress on facebook
Related Stories
Research demonstrates potential method to better control lung cancer using radiotherapy
Manchester scientists are working out how to safely increase the radiotherapy dose given to lung cancer patients – potentially offering improved local control and survival.
High radiotherapy dose improves prospects for children with brain cancer
Two studies to be presented today (Sunday) at the 3rd ESTRO Forum in Barcelona, Spain, show that increasing the dose of radiotherapy given to children with an intracranial ependymoma, a form of cancer of the central nervous ...
Combined brachytherapy techniques should be 'benchmark' for cervical cancer treatment
The first large international study to investigate the late side-effects of a combination of two forms of brachytherapy to treat cervical cancer has shown that the technique successfully delivers higher radiation doses to ...
Computer-controlled table could direct radiotherapy to tumours while sparing vital organs
Swivelling patients around on a computer-controlled, rotating table could deliver high doses of radiotherapy to tumours more quickly than current methods, while sparing vulnerable organs such as the heart, brain, eyes and ...
Permanent radiotherapy implants reduce risk of prostate cancer recurrence after five years
Results from a randomised controlled trial to compare the use of permanent radioactive implants (brachytherapy) with dose-escalated external beam radiotherapy in patients with prostate cancer show that the men who received ...
Recommended for you
Permanent radiotherapy implants reduce risk of prostate cancer recurrence after five years
Results from a randomised controlled trial to compare the use of permanent radioactive implants (brachytherapy) with dose-escalated external beam radiotherapy in patients with prostate cancer show that the men who received ...
High radiotherapy dose improves prospects for children with brain cancer
Two studies to be presented today (Sunday) at the 3rd ESTRO Forum in Barcelona, Spain, show that increasing the dose of radiotherapy given to children with an intracranial ependymoma, a form of cancer of the central nervous ...
Brachytherapy improves survival for inoperable early stage endometrial cancer
Women who have early stage endometrial cancer and are inoperable tend to live longer if they have been treated with brachytherapy with or without external beam radiation, according to new research to be presented at the 3rd ...
Combined brachytherapy techniques should be 'benchmark' for cervical cancer treatment
The first large international study to investigate the late side-effects of a combination of two forms of brachytherapy to treat cervical cancer has shown that the technique successfully delivers higher radiation doses to ...
Breakthrough provides new hope for more effective treatments of HER2+ breast cancer
Ahmad M. Khalil, PhD, knew the odds were against him—as in thousands upon thousands to one.
FDG PET/CT not useful in staging newly diagnosed stage III invasive lobular breast cancer
Although National Comprehensive Cancer Network (NCCN) guidelines consider 18F-PET/CT (FDG PET/CT) appropriate for systemic staging of newly diagnosed stage III breast cancer, the technique may not be equally valuable for ...
User comments
Please sign in to add a comment. Registration is free, and takes less than a minute. Read more
Click hereto reset your password.
Sign in to get notified via email when new comments are made.
© Medical Xpress 2011-2015, Science X network
0 comments:
Post a Comment