A team of researchers at the IRCM led by Frédéric Charron, PhD, in collaboration with bioengineers at McGill University, uncovered a new kind of synergy in the development of the nervous system, which explains an important mechanism required for neural circuits to form properly. Their breakthrough, published today in the scientific journal PLoS Biology, could eventually help develop tools to repair nerve cells following injuries to the nervous system (such as the brain and spinal cord).
Researchers in Dr. Charron's laboratory study neurons, the nerve cells that make up the central nervous system, as well as their long extensions known as axons. During development, axons must follow specific paths in the nervous system in order to properly form neural circuits and allow neurons to communicate with one another. IRCM researchers are studying a process called axon guidance to better understand how axons manage to follow the correct paths.
"To reach their target, growing axons rely on molecules known as guidance cues, which instruct them on which direction to take by repelling or attracting them to their destination," explains Dr. Charron, Director of the Molecular Biology of Neural Development research unit at the IRCM.
Over the past few decades, the scientific community has struggled to understand why more than one guidance cue would be necessary for axons to reach the proper target. In this paper, IRCM scientists uncovered how axons use information from multiple guidance cues to make their pathfinding decisions. To do so, they studied the relative change in concentration of guidance cues in the neuron's environment, which is referred to as the steepness of the gradient.
"We found that the steepness of the gradient is a critical factor for axon guidance; the steeper the gradient, the better the axons respond to guidance cues," says Tyler F.W. Sloan, PhD student in Dr. Charron's laboratory and first author of the study. "In addition, we showed that the gradient of one guidance cue may not be steep enough to orient axons. In those instances, we revealed that a combination of guidance cues can behave in synergy with one another to help the axon interpret the gradient's direction."
In collaboration with the Program in Neuroengineering at McGill University, Dr. Charron's team developed an innovative technique to recreate the concentration gradients of guidance cues in vitro, that is to say they can study the developing axons outside their biological context.
"This new method provides us with several benefits when compared to previous techniques, and allows us to simulate more realistic conditions encountered in developing embryos, conduct longer-term experiments to observe the entire process of axon guidance, and obtain extremely useful quantitative data," adds Sloan. "It combines knowledge from the field of microfluidics, which uses fluids at a microscopic scale to miniaturize biological experiments, with the cellular, biological and molecular studies we conduct in laboratories."
"This is true multidisciplinary work, and an excellent example of what the Program in Neuroengineering aims to accomplish in situations where neurobiologists like myself have a specific question they want to address, but the current tools aren't adapted to answer their question," mentions Dr. Charron. "Thus, thanks to this unique program, we teamed up with McGill's bioengineers and microfluidic and mathematical modelling experts to create the device required for our study."
"This scientific breakthrough could bring us closer to repairing damaged nerve cells following injuries to the central nervous system," states Dr. Charron. "A better understanding of the mechanisms involved in axon guidance will offer new possibilities for developing techniques to treat lesions resulting from spinal cord injuries, and possibly even neurodegenerative diseases."
Injuries to the central nervous system affect thousands of Canadians every year and can lead to lifelong disabilities. Most often caused by an accident, stroke or disease, these injuries are currently very difficult to repair. Research is therefore required for the development of new tools to repair damage to the central nervous system.
Explore further: Steering the filaments of the developing brain
More information: PLoS Biology, http://ift.tt/15JEje0 journal.pbio.1002119
Medical Xpress on facebook
Related Stories
A step forward in regenerating and repairing damaged nerve cells
A team of IRCM researchers, led by Dr. Frédéric Charron, recently uncovered a nerve cell's internal clock, used during embryonic development. The discovery was made in collaboration with Dr. Alyson Fournier's laboratory ...
Connection discovered between the nervous system and the vascular system
Dr. Frédéric Charron, researcher at the Institut de recherches cliniques de Montréal (IRCM), and his team have shown for the first time that a key molecule of the vascular system directs axons during the formation ...
Steering the filaments of the developing brain
During brain development, nerve fibers grow and extend to form brain circuits. This growth is guided by molecular cues (Fig. 1), but exactly how these cues guide axon extension has been unclear. Takuro Tojima ...
Researchers uncover a new piece of the puzzle in the development of our nervous system
Researchers at the Institut de recherches cliniques de Montréal (IRCM) are among the many scientists around the world trying to unearth our nervous system's countless mysteries. Dr. Artur Kania, Director of the IRCM's ...
Identification of a key molecular pathway required for brain neural circuit formation
The research group of Dr. Frédéric Charron, a researcher at the Institut de recherches cliniques de Montréal (IRCM), has made a discovery which could help treat spinal cord injuries and neurodegenerative ...
Recommended for you
Researchers build brain-machine interface to control prosthetic hand
A research team from the University of Houston has created an algorithm that allowed a man to grasp a bottle and other objects with a prosthetic hand, powered only by his thoughts.
Diet rich in methionine may promote memory loss
Memory loss has recently been associated with excessive silencing of genes through a process called methylation. Researchers at the University of Louisville investigated the effects of a diet rich in methionine—an amino ...
Study shows female mammalian phenotype results from repression of male-linked genes by methylation
(MedicalXpress)—A team of researchers with the University of Maryland and Mt. Sinai School of Medicine has found that brain regions in female rodents associated with sexual behavior are feminized by repression ...
Intelligent neuroprostheses mimic natural motor control
Neuroscientists are taking inspiration from natural motor control to design new prosthetic devices that can better replace limb function. In new work, researchers have tested a range of brain-controlled devices ...
Researchers create 'Wikipedia' for neurons
The decades worth of data that has been collected about the billions of neurons in the brain is astounding. To help scientists make sense of this "brain big data," researchers at Carnegie Mellon University ...
Family income, parental education related to brain structure in children and adolescents
Characterizing associations between socioeconomic factors and children's brain development, a team including investigators from nine universities across the country reports correlative links between family ...
User comments
Please sign in to add a comment. Registration is free, and takes less than a minute. Read more
Click here to reset your password.
Sign in to get notified via email when new comments are made.
A team of researchers at the IRCM led by Frédéric Charron, PhD, in collaboration with bioengineers at McGill University, uncovered a new kind of synergy in the development of the nervous system, which explains an important mechanism required for neural circuits to form properly. Their breakthrough, published today in the scientific journal PLoS Biology, could eventually help develop tools to repair nerve cells following injuries to the nervous system (such as the brain and spinal cord).
Researchers in Dr. Charron's laboratory study neurons, the nerve cells that make up the central nervous system, as well as their long extensions known as axons. During development, axons must follow specific paths in the nervous system in order to properly form neural circuits and allow neurons to communicate with one another. IRCM researchers are studying a process called axon guidance to better understand how axons manage to follow the correct paths.
"To reach their target, growing axons rely on molecules known as guidance cues, which instruct them on which direction to take by repelling or attracting them to their destination," explains Dr. Charron, Director of the Molecular Biology of Neural Development research unit at the IRCM.
Over the past few decades, the scientific community has struggled to understand why more than one guidance cue would be necessary for axons to reach the proper target. In this paper, IRCM scientists uncovered how axons use information from multiple guidance cues to make their pathfinding decisions. To do so, they studied the relative change in concentration of guidance cues in the neuron's environment, which is referred to as the steepness of the gradient.
"We found that the steepness of the gradient is a critical factor for axon guidance; the steeper the gradient, the better the axons respond to guidance cues," says Tyler F.W. Sloan, PhD student in Dr. Charron's laboratory and first author of the study. "In addition, we showed that the gradient of one guidance cue may not be steep enough to orient axons. In those instances, we revealed that a combination of guidance cues can behave in synergy with one another to help the axon interpret the gradient's direction."
In collaboration with the Program in Neuroengineering at McGill University, Dr. Charron's team developed an innovative technique to recreate the concentration gradients of guidance cues in vitro, that is to say they can study the developing axons outside their biological context.
"This new method provides us with several benefits when compared to previous techniques, and allows us to simulate more realistic conditions encountered in developing embryos, conduct longer-term experiments to observe the entire process of axon guidance, and obtain extremely useful quantitative data," adds Sloan. "It combines knowledge from the field of microfluidics, which uses fluids at a microscopic scale to miniaturize biological experiments, with the cellular, biological and molecular studies we conduct in laboratories."
"This is true multidisciplinary work, and an excellent example of what the Program in Neuroengineering aims to accomplish in situations where neurobiologists like myself have a specific question they want to address, but the current tools aren't adapted to answer their question," mentions Dr. Charron. "Thus, thanks to this unique program, we teamed up with McGill's bioengineers and microfluidic and mathematical modelling experts to create the device required for our study."
"This scientific breakthrough could bring us closer to repairing damaged nerve cells following injuries to the central nervous system," states Dr. Charron. "A better understanding of the mechanisms involved in axon guidance will offer new possibilities for developing techniques to treat lesions resulting from spinal cord injuries, and possibly even neurodegenerative diseases."
Injuries to the central nervous system affect thousands of Canadians every year and can lead to lifelong disabilities. Most often caused by an accident, stroke or disease, these injuries are currently very difficult to repair. Research is therefore required for the development of new tools to repair damage to the central nervous system.
Explore further: Steering the filaments of the developing brain
More information: PLoS Biology, http://ift.tt/15JEje0 journal.pbio.1002119
Medical Xpress on facebook
Related Stories
A step forward in regenerating and repairing damaged nerve cells
A team of IRCM researchers, led by Dr. Frédéric Charron, recently uncovered a nerve cell's internal clock, used during embryonic development. The discovery was made in collaboration with Dr. Alyson Fournier's laboratory ...
Connection discovered between the nervous system and the vascular system
Dr. Frédéric Charron, researcher at the Institut de recherches cliniques de Montréal (IRCM), and his team have shown for the first time that a key molecule of the vascular system directs axons during the formation ...
Steering the filaments of the developing brain
During brain development, nerve fibers grow and extend to form brain circuits. This growth is guided by molecular cues (Fig. 1), but exactly how these cues guide axon extension has been unclear. Takuro Tojima ...
Researchers uncover a new piece of the puzzle in the development of our nervous system
Researchers at the Institut de recherches cliniques de Montréal (IRCM) are among the many scientists around the world trying to unearth our nervous system's countless mysteries. Dr. Artur Kania, Director of the IRCM's ...
Identification of a key molecular pathway required for brain neural circuit formation
The research group of Dr. Frédéric Charron, a researcher at the Institut de recherches cliniques de Montréal (IRCM), has made a discovery which could help treat spinal cord injuries and neurodegenerative ...
Recommended for you
Researchers build brain-machine interface to control prosthetic hand
A research team from the University of Houston has created an algorithm that allowed a man to grasp a bottle and other objects with a prosthetic hand, powered only by his thoughts.
Diet rich in methionine may promote memory loss
Memory loss has recently been associated with excessive silencing of genes through a process called methylation. Researchers at the University of Louisville investigated the effects of a diet rich in methionine—an amino ...
Study shows female mammalian phenotype results from repression of male-linked genes by methylation
(MedicalXpress)—A team of researchers with the University of Maryland and Mt. Sinai School of Medicine has found that brain regions in female rodents associated with sexual behavior are feminized by repression ...
Intelligent neuroprostheses mimic natural motor control
Neuroscientists are taking inspiration from natural motor control to design new prosthetic devices that can better replace limb function. In new work, researchers have tested a range of brain-controlled devices ...
Researchers create 'Wikipedia' for neurons
The decades worth of data that has been collected about the billions of neurons in the brain is astounding. To help scientists make sense of this "brain big data," researchers at Carnegie Mellon University ...
Family income, parental education related to brain structure in children and adolescents
Characterizing associations between socioeconomic factors and children's brain development, a team including investigators from nine universities across the country reports correlative links between family ...
User comments
Please sign in to add a comment. Registration is free, and takes less than a minute. Read more
Click here
to reset your password.
Sign in to get notified via email when new comments are made.
0 comments:
Post a Comment